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of function space u(r, t) as defined on domain Q 5 V 3
(2y, 1y), where V , Rn (which are sufficiently smoothIn this paper, we analyze the bifurcation of a biodynamics system

in a two-dimensional domain by virtue of reaction–diffusion equa- for the relevant derivatives to be continuous and such
tions. The discretization method in space is the finite element that the correct boundary conditions are satisfied). The
method. The computational algorithm for an eigenspectrum is de- equilibrium solutions of evolution equations (1) that are
scribed in detail. On the basis of an analysis of eigenspectra ac-

subject to specified boundary conditions may be steady,cording to Helmholtz’s equation, the discrete spectra in regards to
periodic, or other forms. It is necessary to consider thethe physical variables are numerically obtained in two-dimensional

space. In order to investigate this mathematical model in regards stability of the solution since an unstable equlibrium solu-
to its practical use, we analysed the stability of two cases, i.e., tion for equations is not physical.
hydranth regeneration in the marine hydroid Tubularia and a brown The finite element method has enabled the linear-elastic
tide in a harbor in Japan. By evaluating the stability according to the

instability analysis of practical structures under complexlinearized stability definition, the critical parameters for outbreaks of
load conditions [9]. The critical feature of the discretebrown tide can be theoretically determined. In addition, results for

the linear combination of eigenspectrum coincide with the distribu- system for a buckling load can be obtained under linearized
tion of the observed brown tide. Its periodic characteristic was also stability by a finite element method. Apart from the influ-
verified. Q 1997 Academic Press ence of nonlinear reaction terms in a reaction–diffusion

system, the diffusion matrix has the same function as the
stiffness one in structural analysis. Spectra are similar toI. INTRODUCTION
the normal modes of a structure from the generalized eigen-
problem [10]. It has been proven that the Ritz–GalerkinA reaction–diffusion system can be represented by the
method is advantageous in regards to accuracy, efficiency,following equations [1, 2]
and ability to approach the complex geometries in
question.u̇ 5 F(l, u) 1 D=2u, (1)

As one of the most important environmental problems
in oceanic ecology, the generation rate of phytoplanktonwhere u is in a Hilbert space, generally, and denotes a

vector describing the density of certain substances. The in a brown tide can be represented by a reaction process,
such as the Lotka–Volterra system and other prey–dot represents the derivative with respect to time and is

the rate of a change in species in the brown tide. F is an predator systems [3]. Although all of the above systems
are simply expressed as two ordinary differential equa-operator and denotes the rate of species reaction in the

brown tide, e.g., the growth rate or dissipation–production tions, they reveal the mechanism about the population
oscillation. If we further consider the effect of diffusionterm. =2 is the Laplacian operator. The third term in (1)

indicates the effect of diffusion, which may represent mo- and even convection under a reaction–diffusion system,
along with an increase of the physical processes in thelecular diffusion or the random movement of individuals

in a population. Furthermore, D represents a diffusion mathematical model, bifurcation parameter l in the onset
of a brown tide can be determined under the definitionmatrix. Parameter l is referred to as a bifurcation parame-

ter which we shall assume to be scalar for simplicity (e.g., of linearized stability [3]. The parameter can explain the
outbreak of brown tides from a bifurcation point ofl . 0). See Aris [1] for an application of a similar equation

to chemical reaction theory, and Murray [6] for an applica- view. In a linearized system, the regular pattern in a
practical field that is seen during this development maytion to a biological system.

In general, Hilbert space will normally be completed be the result of a combination of the spectra of the
reaction–diffusion system. To produce such patterns, aunder a norm that is derived from a suitable inner product
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reaction–diffusion system would have to have a steady where f and g have continuous second-order spatial and
first-order temporal derivatives. The constants D1 , D2 , J1 ,state that is stable to spatially homogeneous perturbation

but unstable to spatially inhomogeneous ones (or at least J2 , a, r, C are considered to be fixed. If domain V is defined
in a two-dimensional plane, and n is defined as the unitmore unstable to inhomogeneous than to homogeneous

perturbation). outward normal vector, the boundary condition of species
flux is imposed asIn this paper, we will first consider hydranth regenera-

tion in the marine hydroid Tubularia in a regular geometri-
cal boundary with spatially homogeneous perturbation. =u · n 5 =v · n 5 0 on boundary G. (6)
This proves that the result obtained with Tubularia is in
agreement with that in observation [2]. Then, we will focus 3. STABILITY ANALYSIS
on the brown tide at Maizuru Harbor near the sea of Japan
[7] and will utilize the reaction–diffusion equations as a In this section, we will discuss linearized stability in the
mathematical model in regards to the evolution of phyto- reaction–diffusion system by employing an approximation
plankton in brown tides. Moreover, we have used spectrum of the finite element method. To search for a spatial non-
analysis (of spatially inhomogeneous perturbation) in re- uniform structure in bounded domains with zero-flux
gards to a distribution of plankton based on the solution boundary conditions (this kind of spatial heterogeneity in
of Helmholtz’s equation with the finite element method. ecology is known as patchiness [6]), the eigenspectrum of
These spectra are similar to the normal modes that result the operator 2=2 is introduced in order to analyze the
from a freely vibrating undamped system in structural anal- linear stability of the discrete spectrum according to the
ysis. The stability concept is used in order to judge the finite element method. The stability of the spatial structure
unstable and asymptotically stable. Outbreak parameter l is judged in terms of the definition of linearized stability
can also be obtained and certain linear combination pat- by Kielhöfer [4].
terns in the spectrum are compared with observation data.
They are in very close agreement. 3.1. Finite Element Analysis (Eigenvalue Method)

The remainder of the paper is organized as follows.
The stability of the trivial solution for a nonlinear systemSections 2 describes the partial differential equations of

(2) is often determined by the corresponding linearizedthe system. In Section 3, the implementation aspects of
system, i.e.,stability are discussed by means of the finite element

method. In Section 4, the eigenspectrum solvers and algo-
v̇ 5 lMv 1 D=2v, (7)rithms in both symmetrical and unsymmetrical matrices

are described for the generalized eigenproblem. The deter-
where M denotes the Jacobian matrix, i.e.,mination of the parameters and the discretization of com-

putational domain are discussed in Section 5. The results
of the stability and the bifurcation properties of Tubularia
and the brown tide are analysed in Section 6 in detail. M 5Ff,u f,v

g,u g,v
G , D 5FD1

D2
G . (8)

Section 7 concludes the paper.

The matrix form of (7) can be rewritten as2. SYSTEM MODEL

For the reaction–diffusion system, a set of two-compo-
nent equations are used, as shown in Eqs. (2) Fu̇

v̇
G5 lFf,u f,v

g,u g,v
GFu

v
G1FD1=

2u

D2=
2v
G . (9)

u̇ 5 l f(u, v) 1 D1=
2u, v̇ 5 lg(u, v) 1 D2=

2v, (2)
Considering the zero-flux boundary condition (6), the dis-
cretization of finite element for (9) in subspace becomes

where u and v denote the density of certain substances.
D1 and D2 are the unequal diffusivity of two kinds of
species. Functions f and g are given as FS e

S eGFu̇e

v̇eG
f(u, v) 5 J1 2 u 2 rh(u, v) (3)

g(u, v) 5 a(J1 2 v) 2 rh(u, v) (4) 5HlFf e
,u S e f e

,v S e

g e
,u S e g e

,v S e
G2FD1K e

D2K eGJFue

veG ,

h(u, v) 5
uv

1 1 u 1 Cu2 , (5)
(10)
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where superscript e denotes the variable defined in the If the eigenvalues of operator 2=2 on the domain V with
the given boundary condition (6) are given by g2, thenelement. Given interpolation function f, elemental matri-

ces S e and K e are shown as spectral problem (16) has a trivial solution or is given by

S e 5 E
ve fafbdve, K e 5 E

ve fa,ifb,idve, (11)
det(sI 2 L) 5 Us 1 D1g2 2 l f,u 2l f,v

2lg,u s 1 D2g2 2 lg,v
U ,

where a and b indicate the interpolation function index (17)
and i is that of spatial dimensions, respectively. Provided

where I is the identity. To find the possible values whichv 5 Fest, (12)
g2 may take we must solve the Helmholtz equation [8], i.e.,

then, (10) can be represented in the form
=2u 1 g2u 5 0 in V. (18)

sBF 5 AF, (13)
If there are nontrivial solutions in Eq. (16), by keeping
the polynomial (17) as zero, the eigenvalues sn(l) of L(l)where s and F denote the eigenvalue and eigenvector of
are given by the roots ofthe linearized system (7), respectively. Meanwhile, elemen-

tal matrices Ae and Be can be shown as
s 2

n 1 [(D1 1 D2)g2
n 2 ltr M ]sn 1 Qn(l) 5 0, (19)

Ae 5Fl f e
,u S e 2 D1K e l f e

,v S e

lg e
,u S e lg,v S e 2 D2K e

G
(14)

where

Qn(l) 5 l2det M 2 lg2
n(D2 f,u 1 D1 g,v) 1 D1D2g4

n (20)
Be5FS e

S eG .

and the trace and determinant of M are
In general, matrix A is nonsymmetric. So the set of s is
the set of complex numbers. For the case of a system of tr M 5 f,u 1 g,v , det M 5 f,u g,v 2 f,v g,u . (21)
reaction–diffusion equations defined on a bounded spatial
domain, the spectrum consists entirely of eigenvalues.

Routh–Hurwitz’s criterion states that both the roots sn ofAccording to the principle of linearized stability from
(19) have negative real parts if and only ifKielhöfer [4], if spectrum s(l) is contained in the left-half

plane and bounded away from the imaginary axis, the
(D1 1 D2)g2

n 2 ltr M . 0, Qn(l) . 0. (22)trivial solution of (2) is asymptotically stable. If s(l) con-
tains a point in the right open half plane at least, the
trivial solution is unstable. Thus, for a system on a bounded Then, all of eigenvalues s(l) are located on the left-half
spatial domain, we merely have to check that all eigenval- plane, and the solution of u is asymptotically stable.
ues s(l) are in the left-half complex plane for asymptotic
stability, and only if s(l) contains a point in the right plane 3.3. Substitution Method
is the trivial solution of Eq. (2) unstable.

The finite element approximation of Helmholtz’s equa-
tion (18) can be derived in subspace as3.2. Spectra Analysis

As to the nonlinear system (2), we refer to the linearized
Ku 5 g2Su. (23)operator L(l) as

When the stability of the spectrum is checked by meansL(l) 5 lM 1 D=2. (15)
of the finite element analysis, i.e., eigenvalue method, the
formulation (23) can be directly substituted into (10), Eq.Thus, the eigenspectra of this linearized system in the infi-
(13) can be reduced asnite dimension are shown as

LF 5 sF. (16) sBF 5 A9F, (24)
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where elemental matrix A9e can be written as L2T AL21z 5 sz

⇒ L2T(A 2 sLT L)L21z 5 0 (32)

⇒ L2T(A 2 sB)L21z 5 0.A9e 5F(l f e
,u 2 D1g2)S e f e

,v S e

lge
,u S e (lge

,v 2 D2g2)S e
G . (25)

Then, the eigenvectors F can be computed from the equa-
Generally, matrix A9 is nonsymmetric. Actually this stability tion F 5 L2Tz, by using backward substitution for the
analysis is the modified version of the finite element analy- upper/lower triangle matrix. In the practical calculation
sis as described above. of (31), if A is symmetrical and matrix H still keeps a

symmetrical feature through the transformation, we can
adopt some calculation algorithm in order to obtain an

4. EIGENSPECTRUM SOLUTION
accurate spectrum, as stated in the following. However, if
it is nonsymmetrical, the QR method is effective in orderWith respect to the stability analysis as stated above,
to get the eigenvalues in the system (31).there are three kinds of methods to check the stability in

the eigenspectrum. In the computation of finite element
4.1. Computation of Spectra for Symmetrical Matrixequations in the eigenvalue problems, there actually are

two types of equations in the generalized eigenspectrum In eigenspectrum computation for the Helmholtz equa-
problem, i.e., those of the symmetrical matrix and the non- tion, matrix A is symmetrical. In addition, we are only
symmetrical matrix in Eqs. (13) and (24). The general concerned with a small number of eigenvalues and eigen-
formulation of an eigenspectrum in the above section can vectors in the practical field, so the above-mentioned com-
be written as putational method can be modified and accelerated by the

Strum bisection method and subspace iteration and inverse
AF 5 sBF. (26) interaction, according to the computational sequence of

successive increase or decrease in eigenvalues. The proce-
Before the calculation of the spectrum in (26), the transfor- dure for the calculation of the spectrum in the Helmholtz
mation is necessary in order to obtain the standard eigen- equation (for symmetrical A) is listed as follows:
value problem [5].

Step. 0. (Start) Assumption of initial dataFirst, because of the symmetry in matrix B, this matrix
can be factorized into an upper triangular matrix and into Step. 1. Automatic mesh generation
a lower one by Cholesky factorization, i.e., Step. 2. Check the mesh and half bandwidth for each el-

ement
B 5 LT L. (27) Step. 3. Calculation of matrices A and B

Step. 4. Calculation of eigenvalues and eigenfunctionsSetting vector z 5 LF, we substitute these formulae into
Step. 4.1. Computation of matrix normEq. (26) and we get
Step. 4.2. Generalized Strum calculation for the sym-

metric band matrix from the smallest eigenvalue to theAF 5 sLT LF. (28)
largest by means of Martin-Wilkinson’s special Gaussian
eliminationMultiplying the equation as shown above by L2T, then

Step. 4.3. Bisection
L2T AL21z 5 sz. (29) Step. 4.4. Subspace iteration for symmetric band

matrix
If a matrix Step. 4.5. Analysis of error

Step. 5. Evaluation of stability for a system under the
H 5 L2T AL21, (30) definition of the linearized stability

Step. 6. Output of results and graphone can transfer Eq. (26) into the form

4.2. Computation of Spectra for Nonsymmetrical MatrixHz 5 sz. (31)
Because of nonsymmetry in matrix A, it is effective for

the calculation of the spectrum in Eqs. (13) and (24) byIn general, the eigenvalue problem of Eq. (26) is equivalent
to the eigenvalue solution for matrix H, as in using the QR method, since a complex eigenvalue exists
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in this case. The algorithm of this case for nonsymmetrical
matrix A can be shown as follows:

Step. 0. (Start) Calculation of matrices A and B

Step. 1. Factorization of matrix B by using the
Cholesky factorization

Step. 2. Calculation of matrix H

Step. 3. Calculation of the upper Hessenberg matrix of
H by using the Householder reduction

Step. 4. Calculation of the eigenvalues s by means of
the QR method

Step. 5. If the calculation of eigenvector F is needed,
then go to

Step. 5.1. Calculation of eigenvector z by using inverse
iterative method

Step. 5.2. Calculation of eigenvector F by means of
the backward substitution

Step. 6. Stop
FIG. 1. Mesh in Maizuru Harbor.

5. DETERMINATION OF PARAMETERS AND
DISCRETIZATION OF COMPUTATIONAL DOMAIN 5.2. Case 2

As for the reaction–diffusion system for two of the5.1. Case 1
phases of the species in Maizuru Harbor, variable u denotes

In the first case, the hydranth regeneration in the marine the density of a microalga in a cell per liter at time t,
hydroid Tubularia is analysed. The considered domain is and v is the density of all other competing phytoplankton
defined in a hollow cylinder, i.e., V 5 h(r, u)u1,r,d, 0#u,2fj. species in the same coastal waters. The scales of physical
d is the nondimensional outer radius r2 of the cylinder, variables u0 , T0 , and L0 denote the maximum density of
i.e., d 5 r2/r1 , in which r1 denotes the inner radius. The phytoplankton, the period of pigment change from the
boundary condition is that of zero-flux in the inner and bright to the dark patch in the brown tide, and the maxi-
outer circumferences. Given the scales of the physical vari- mum averaged length of a patch, respectively. According
ables u0 , T0 , and L0 which denote the maximum concentra- to the field data on Sept. 17–23, 1978, in Maizuru Harbor,
tion of pigment in the Tubularia, the scale of time and the the above-mentioned scale parameters can be chosen as
inner radius, respectively, nondimensional equations (2) T0 5 2.5 h and L0 5 1000.0 m. As the diffusion observed
can be rewritten as is approximately 0.175 m2/s (see [7]), we can deduce that

the value of the nondimensional diffusion coefficient is
D*1 5 1.26 3 1023. Generally, diffusion D*2 can be referred­u*

­t*
5 l f(u*, v*) 1 D*1 =2u* (33) to as half of D*1 . The discretization of the computational

domain is presented in Fig. 1. The mesh is generated auto-
matically in which the discrete element system is 1446 and­v*

­t*
5 lg(u*, v*) 1 D*2 =2v*, (34)

the total number of nodal points is 926.

6. RESULTS AND ANALYSISwhere the asterisk indicates the nondimensional meaning.
Thus, the nondimensional diffusion coefficient can be

6.1. Tubularia
shown as D*1 5 D1T0/L2

0 . In this case, we have chosen
diffusivity D*1 as the unity for simplicity. Diffusion D*2 can The eigenspectrum of the Helmholtz equation (18)

(that is, the spectrum of linearized system (2) in a hollowbe referred to as the half of the value of D*1 .
The computation domain in this hollow cylinder can be cylinder) can be solved by employing the computational

algorithm on the symmetrical matrix as stated above fromdivided into triangular subspaces. The circumference is
divided equally into a series of gaps and the polar gaps the smallest eigenvalue to the largest one. As the number

of eigenvalues is the same as the total degrees of freedomare also equally spaced. There are 400 nodes and 700 ele-
ments for the system of mesh when d 5 1.2 and 1.5. of the discrete system, for simplicity only the first 20 eigen-
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TABLE I patterns of distribution for eigenvectors have a secondary
division in the polar direction, when g is a simple eigen-Eigenvalues and Residual Error in Tubularia
value of the spectrum, i.e., mi 5 1. This means the so-

No. g2 « called secondary bifurcation. The larger the eigenvalue is,
the more patches occur in the hollow domain. According

1 0.2953246123D-14 0.2082257100D-12 to observations in experiment [3], the pigment (i.e., concen-
2 0.6526687327D100 0.1337463674D-13

tration) represents the strength of hydranth regeneration3 0.6526687327D100 0.1464872416D-13
in Tubularia. It follows that the eigenvectors obtained are4 0.2612193613D101 0.3627445799D-13

5 0.2612193613D101 0.1709485532D-13 very close to the distribution of pigment in reality when l
6 0.5883799667D101 0.2311083116D-13
7 0.5883799667D101 0.2831008046D-13
8 0.1047847286D102 0.4069199367D-13
9 0.1047847286D102 0.2531656051D-13

10 0.1641642779D102 0.2278095144D-13
11 0.1641642779D102 0.2225106284D-13
12 0.5883799667D101 0.2875368709D-12
13 0.5883799667D101 0.7127917364D-12
14 0.2612193613D101 0.3890947212D-11
15 0.2612193613D101 0.6711484956D-12
16 0.6526687327D100 0.3732418061D-11
17 0.6526687327D100 0.8704263516D-12
18 0.6950272065D-14 0.1403421447D-11
19 0.2373172252D102 0.1179404502D-11
20 0.2373172252D102 0.3603360401D-12

values are listed in Table I in which d 5 1.5. Moreover,
the residual error of the corresponding eigenvalue can be
defined as

« 5
iAu 2 g2Bui2

iAui2
, (35)

where i ? i2 denotes the 2-norm of a vector and the eigen-
value is represented by g2 as the result of symmetrical
positive matrices A and B in the Helmholtz equation (18).
The eigenvalues occur in pairs, the most algebraic multi-
plicity being mi 5 2 (except for the first and 18th eigenval-
ues). The patterns of the corresponding eigenvalues are
symmetrical with the origin of a hollow cycle (see Fig.
2.1). It means that the eigenfunction solution is a spatially
homogenous perturbation.

According to the definition of stability for the linearized
system, the stability of this reaction–diffusion system is
analyzed. First, we will show the distribution of eigenfunc-
tions in the ring in Figs. 2.1(2)a–d for d 5 1.2 and d 5 1.5,
respectively. The dark regions represent areas where u is
positive and the light regions where it is negative. In addi-
tion, the results obtained by means of a linearized analyti-
cal method are compared with those from a nonlinear finite
element method for reaction–diffusion system (2) [3]. If
division number NT (i.e., the wave number of the eigen-
function) in the circumference is small, the present results
are similar to those obtained by using the nonlinear analy- FIG. 2.1. Comparison of results obtained from nonlinear and lin-

ear analysis.sis method with FEM. However, when g2 $ 6.3874, the
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stated above. As a result, only the first 20 eigenvalues are
listed in Table II. The eigenvalues occur in a simplex,
i.e., algebraic multiplicity mi 5 1, compared with those in
Tubularia, because there is not a geometrically symmetri-
cal origin within the computational domain. The eigenvec-
tor patterns for the eigenvalue numbers 2–5 listed in Table
II are shown in Figs. 3a–d. In these patterns, the density
isolines denote that the density is positive; inversely, the
white region denotes that the density is negative. It is
obvious that the patch of brown tide oscillates in two-
dimensional space. The more g increases, the larger the
number of the patch is. Eigenvalue g can be considered
as a frequency parameter in regards to density perturba-
tion. The Helmholtz equation can also represent the per-
turbation of water height in shallow water so we can con-
sider that the frequency of the transportation of the patch
is consistent with that of water wave travel. This was proven
from the angle of observation [7].FIG. 2.2. Maximum real part of s(l) p g.

6.2.2. Comparison of Results in Regards to
Spectrum Stabilityis small. Meanwhile, since the distribution of pigment in

Fig. 2.1(1)d can be considered as a composite which con- In order to compare the spectrum as regards the stability
sists of the modes of No. 25 (double bifurcation point), 40 in the reaction diffusion system from the three different
(NT 5 10) and 44 (NT 5 11), we can add up the above methods mentioned above, we considered the parameter
three modes and show the results in Fig. 2.1(2)d. It shows d 5 1.5 and l 5 25 for Tubularia, and l 5 1.5 3 1023 for
that the result for a linearized system is very close to that of the brown tide, as shown in Figs. 4a and b, respectively.
a nonlinear one when the so-called secondary bifurcation With respect to the spectra analysis (local analysis method)
happens in the smaller l. and the substitution method, it is the same for the stability

By using the spectra analysis method, we can search for result by checking the maximum real part of the eigenvalue
the most unstable point for each of the parameters (d and
l), so long as one compares the maximum real part of s(l)
with the others (see Fig. 2.2). For example, the upper half

TABLE II
of the plane denotes the unstable regime as there is at

Eigenvalues and Residual Error in Brown Tideleast one eigenvalue which extends to the right half of the
plane. The most unstable point exists in each case for

No. Eigenvalue «
parameters d and l, and the stability has a closer depen-
dence on parameter l but not on d. 1 0.3156154301D-15 0.3035464564D-10

2 0.6300295891D-01 0.3285988889D-10
3 0.1420206070D100 0.1041211708D-116.2. Brown Tide
4 0.4077687592D100 0.1127543462D-11

In this section, we will discuss four aspects in regards to 5 0.5505448178D100 0.9889151215D-10
6 0.5772813529D100 0.1133638092D-09stability in the brown tide at Maizuru Harbor: a solution
7 0.1132876394D101 0.5679208651D-10for the Helmholtz equation by using the finite element
8 0.1336440419D101 0.6632475055D-10method, a comparison amongst the three kinds of methods
9 0.1732569259D101 0.2305989155D-10

for stability analysis as described above, analysis of bifurca- 10 0.2052574221D101 0.1074617023D-12
tion parameter l in the reaction–diffusion system, and a 11 0.2137504154D101 0.2596854856D-11

12 0.2540314010D101 0.8511505946D-12solution for the brown tide, based on the linear combi-
13 0.2916519498D101 0.1318674609D-09nation.
14 0.2959111655D101 0.1256005206D-09
15 0.3422775077D101 0.4157083980D-126.2.1. Solution for a Helmholtz Equation
16 0.3656839971D101 0.8795145548D-10
17 0.3900551695D101 0.7849843760D-10By employing the computational algorithm in regards
18 0.4372241801D101 0.9087895776D-10to the symmetrical matrix just as for the spectrum solution
19 0.4457264717D101 0.8366920249D-10

in Tubularia, we can obtain a spectrum for the linearized 20 0.4891238593D101 0.2382478649D-10
system in this brown tide from Helmholtz’s equation as
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FIG. 3. Distribution of eigenvectors in brown tide.

s(l), since Eq. (24) includes the characteristics of the wave the results of stability analysis. The development of this
reaction–diffusion advances gradually. First, the patternsoscillation in terms of the substitution of (23) into (10).

However, the stability result from the eigenvalue method with the lowest frequency become unstable and the corre-
sponding critical point (l01 , g01) is singular in a l 2 g(global analysis method) is different as regards the results

obtained by the two methods stated above. It results from plane. The system in the left side of this point is asymptoti-
cally stable. Then, when the patterns with the lower fre-matrix K in (10); that is, this matrix does not entirely

represent the oscillation feature in the conventional linear quency are converted to unstable, the second singular point
is (l02 , g02). In the same way, the other finite singularinterpolation of a triangular element. Along with an in-

crease in wave number g, this difference will become quite points can be determined from this spectrum, i.e., (l03 ,
g03), (l04 , g04), and so on. We can refer to the singulara bit larger. Thus it implies that the spectra analysis method

and the substitution method are better than the eigen- point of the beginning as the bifurcation parameter. In the
same manner, the third and higher order parameters canvalue method.
be determined. The values of these parameters are listed
in Table III. By undergoing all bifurcation points, the sys-6.2.3. Analysis of Bifurcation Parameter l
tem will become a completely unstable situation, just like

By using the spectra analysis method and checking spec- the double bifurcation and multiple bifurcation in some
trum stability under many kinds of parameter l, in Fig. 5 one-dimensional systems (e.g., in the simplex logistic equa-
we show a bifurcation diagram between g and l in the tion), or it means that the chaos of a brown tide will happen.
brown tide. The shaded region is the unstable area, the Finally, it reveals that the first critical point (l01) is a possi-
white is asymptotically stable, and the dark point denotes ble parameter in the outbreak of brown tide.
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FIG. 5. Bifurcation diagram.

sult, a series of the combinations are shown on the right
side of Fig. 6. These solutions represent the density distri-
bution of phytoplankton in the brown tide on Sept. 17–23,
1978, respectively. The solutions are in good agreement
with the observation shown in the left side of the same
picture. In addition, by means of a trial and error method
for the sake of simplicity, a set of ai was obtained and
listed in Table IV, we can find out that the eigenvectors
with the larger number represent the perturbation oscilla-
tion in a higher wave number.

6.3. Stability of General Solutions for a Brown Tide

To investigate the stability and the solution period in
reality, the solution which represents the distribution of
phytoplankton in a brown tide on Sept. 17–23, 1978 is
subject to verification as to its stability. In practice, a spatial
solution has a periodic characteristic when time extends
to infinity. In this section, it will be shown to be not onlyFIG. 4. Comparison of stability using three methods: (a) Tubularia;

(b) brown tide. stable but periodic as well.
Each pattern of the general solution (from linear analysis

as shown in Fig. 6 in the above section) is temporarily
considered as a stationary state. By employing the finite6.2.4. Distribution of Phytoplankton from

Linear Analysis

Moreover, if we consider eigenvectors ui as a base set
TABLE IIIin this linearized system, the possible solution u for system

(2) can be approximated linearly, i.e., Bifurcation Parameters in the Brown Tide

No. 1 2 3 4u 5 oaiui , i 5 1, n, (36)

l0i 3 1023 0.495 1.100 4.850 8.700
where ai are a set of the generalized coordinates and imply g0i 0.377 0.665 1.190 1.660
the oscillation amplitude for each wave number. As a re-
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FIG. 6. Comparison of distribution of phytoplankton in brown tide.

element method (i.e., eigenvalue method) as described mine conjugate pairs of eigenvalues that cross the imagi-
nary axis approximately, i.e.,above and by taking the parameter l 5 1.5 3 1023 close

to the critical bifurcation parameter, the eigenspectrum
for each pattern was computed to determine the stability s 5 j 6 ih, (37)
of the stationary solution. Figure 7 illustrates the distribu-
tion of eigenvalues for all patterns in a complex plane. where the real part j is very small and is close to zero, a
One can extract the maximum real part of each eigenspec- general solution with perturbation can be represented as
trum for the above solution. Figure 8 can be obtained which
shows all of the maximum real parts for each stationary

u(x, y, t) 5 u0(x, y)
(38)solution and implies that the solutions are stable under

Lyapunov’s definition of stability. In Fig. 7, one can deter- 1 ohFi(x, y)e(ji1ihi)t 1 Fi(x, y)e(ji2ihi)tj,
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FIG. 6—Continued

TABLE IV

The Coordinates in the Base of the System

u 1 2 5 6 7 8 10 11 12 15 17 18

I 0 20.2 20.4 20.2 0.1 20.3 0 0 0 0 0 0
II 0 20.39 20.6 20.33 0 0 0 0 0 0 0 0
III 0 21.0 20.8 20.5 0 0 0 0 0 0 20.45 0
IV 0.3 21.0 20.5 0.5 0 0 0 0 0 0 0.5 0
V 0 20.06 20.43 20.4 0 20.15 0 0 0 20.11 20.05 20.025
VI 2.1 0 0 0 0 20.6 0.6 20.6 0.6 0 0 20.12
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FIG. 7. Distribution of eigenvalues for each pattern in brown tide.

where F and F denote the eigenvector and conjugate ei- exist in the general solution. In Table V, both the frequen-
cies and the period are listed in which the period is trans-genvector, respectively. u0 is the stationary solution as

shown in Fig. 6. Since the real part j is small enough in formed into a practical one in terms of multiplication by
time scale T0 . In general, the longest period of oscillationpractical numerical calculation, ej P 1.0. Meanwhile, as

the imaginary part e2ih indicates the part of the periodic is close to 10 centuries in pattern (III) and the shortest
one is about 33 years in pattern (IV). A frequency doublingoscillation in a brown tide, several kinds of frequencies
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1. The reaction–diffusion system can describe the
growth of species in the Tubularia and the evolution of a
brown tide. The homogeneous transportation of phyto-
plankton can be represented by a diffusion term and pro-
duction is given by the reaction term.

2. The eigenvectors of the Helmholtz equation express
the oscillation perturbation spectrum in the patch of hy-
dranth regeneration in Tubularia and in a brown tide.

3. The most unstable eigenvector occurs in the smaller
modes of the eigenvalue in the spectrum. It follows that
there is a very unstable point in the system.

4. The combination of eigenvectors can be similar to
the distribution of the patches in both Tubularia and the
brown tide.

5. It is simple and effective to use spectrum analysis
and substitution methods in order to check the stability of
a linear system.

6. In particular, as regards the evolution of the brownFIG. 8. Maximum real part of eigenvalues for each pattern.
tide (from the linearized point of view), we can consider
the first singular point as the possible value in the onset
of the brown tide. From the bifurcation diagram, by under-

relation also remains in the table as well. Those frequencies going finite times bifurcation the system of reaction–
can be considered qualitatively as an explanation of the diffusion will convert itself so as to be completely unstable.
practical period in a brown tide with a large time scale.

By checking the stability of the spectrum, the bifurcation
parameter l is obtainable. This implies the onset of a brown
tide in a parameter level. Meanwhile, by means of calculat-7. CONCLUSION
ing eigenvalues, the frequency and the period for a brown
tide can also be determined from the stationary solutionIn this paper, we analyzed the bifurcation of both Tubu-
which represents the distribution of phytoplankton in alaria in a hollow cylinder and in a brown tide in Maizuru
brown tide that has periodic characteristics.Harbor by means of the finite element method. Our conclu-

However, since an exponential function is provided forsions are remarkable:
the reaction term, it is plausible to describe the reaction
mechanism in a species of brown tide. Actually, a practical
process presents the phenomena of both periodic and de-TABLE V
cay. In order to simulate the process more accurately, it

Frequency Spectrum for a General Solution in a Brown Tide is necessary to modify the reaction term in this model. In
addition, it is important for the stability analysis to take

No. Im(s) Frequency Period (years)
the convective term (i.e., tidal flow) into account; however,
doing so makes bifurcation analysis very complicated. Fi-II 1.02065E-05 1.62441E-06 175.68625

7.47181E-06 1.18917E-06 239.98809 nally, although the problem of analysis in three-dimen-
III 1.59071E-05 2.53170E-06 112.72551 sional space is extremely complicated, it is possible and

1.94154E-06 3.09007E-07 923.56475 necessary to research the impact of waves in shallow water
IV 5.43078E-05 8.64336E-06 33.01818

further in the assumption of well mixing in a vertical direc-2.85316E-05 4.54096E-06 62.84753
tion in the future. Moreover, in the period analysis for the9.55573E-06 1.52084E-06 187.65137

7.35011E-06 1.16980E-06 243.96172 general solution, the exact algorithm needed to extract
2.10721E-06 3.35373E-07 850.95726 the eigenvalue must be considered so as to determine the

VI 5.43519E-05 8.65038E-06 32.99138 features of Hopf bifurcation.
3.88927E-05 6.18997E-06 46.10489
1.57165E-05 2.50137E-06 114.09258
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